Blending Learning and Inference in Conditional Random Fields
نویسندگان
چکیده
Conditional random fields maximize the log-likelihood of training labels given the training data, e.g., objects given images. In many cases the training labels are structures that consist of a set of variables and the computational complexity for estimating their likelihood is exponential in the number of the variables. Learning algorithms relax this computational burden using approximate inference that is nested as a sub-procedure. In this paper we describe the objective function for nested learning and inference in conditional random fields. The devised objective maximizes the log-beliefs — probability distributions over subsets of training variables that agree on their marginal probabilities. This objective is concave and consists of two types of variables that are related to the learning and inference tasks respectively. Importantly, we afterwards show how to blend the learning and inference procedure and effectively get to the identical optimum much faster. The proposed algorithm currently achieves the state-of-the-art in various computer vision applications.
منابع مشابه
Blending Learning and Inference in Structured Prediction
In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملApproximate Parameter Learning in Conditional Random Fields: An Empirical Investigation
We investigate maximum likelihood parameter learning in Conditional Random Fields (CRF) and present an empirical study of pseudo-likelihood (PL) based approximations of the parameter likelihood gradient. We show, as opposed to [1][2], that these parameter learning methods can be improved and evaluate the resulting performance employing different inference techniques. We show that the approximat...
متن کاملConditional random field with high-order dependencies for sequence labeling and segmentation
Dependencies among neighboring labels in a sequence are important sources of information for sequence labeling and segmentation. However, only first-order dependencies, which are dependencies between adjacent labels or segments, are commonly exploited in practice because of the high computational complexity of typical inference algorithms when longer distance dependencies are taken into account...
متن کاملDeep-structured hidden conditional random fields for phonetic recognition
We extend our earlier work on deep-structured conditional random field (DCRF) and develop deep-structured hidden conditional random field (DHCRF). We investigate the use of this new sequential deep-learning model for phonetic recognition. DHCRF is a hierarchical model in which the final layer is a hidden conditional random field (HCRF) and the intermediate layers are zero-th-order conditional r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 17 شماره
صفحات -
تاریخ انتشار 2016